EXERCISES [MAI 2.9]

TRANSFORMATIONS OF FUNCTIONS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1.

y = f(x) + 5	(1, 5.5)	y = f(x+5)	(-4, 0.5)
y = f(x) - 5	(1, -4.5)	y = f(x - 5)	(6, 0.5)
y = 5f(x)	(1, 2.5)	y = f(5x)	(0.2, 0.5)
y = f(x) / 5	(1, 0.1)	y = f(x / 5)	(5, 0.5)
y = -f(x)	(1, -0.5)	y = f(-x)	(-1, 0.5)

2. (a)

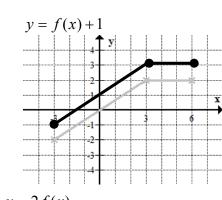
y = f(x) + 3	(-1, 6)	y = f(x+3)	(-4, 3)
y = f(x) - 3	(-1, 0)	y = f(x - 3)	(2, 3)
y = 3f(x)	(-1, 9)	y = f(3x)	(-1/3, 3)
y = f(x)/3	(-1, 1)	y = f(x/3)	(-3, 3)
y = -f(x)	(-1, -3)	y = f(-x)	(1, 3)

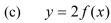
(b)
$$f(x)$$
 (-1, 3)
 $2f(x)$ (-1, 6)
 $2f(x-3)$ (2, 6)
 $2f(x-3)+4$ (2, 10)

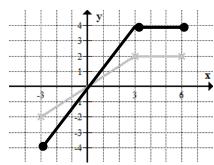
Hence the corresponding point is (2,10)

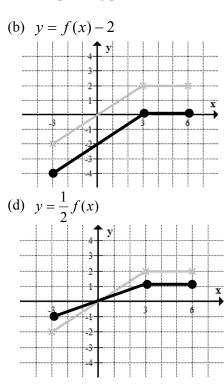
3.

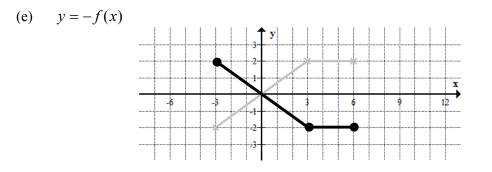
(a)

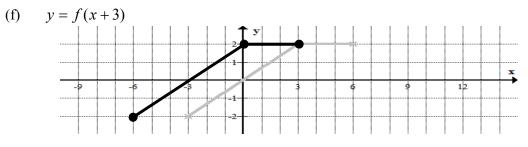


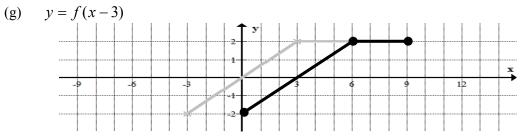


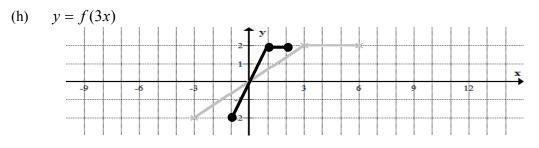


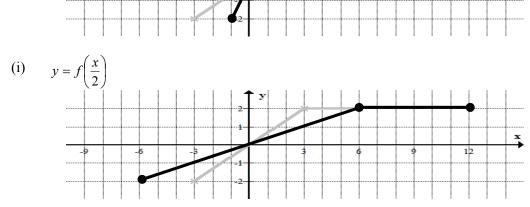


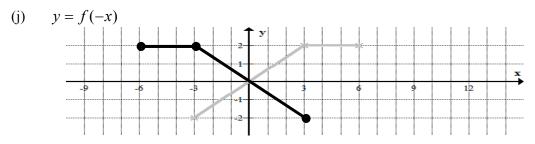












4. (a)
$$-f(x-2)+5$$

f(x)	original	
-f(x)	reflection in x-axis	
-f(x-2)	horizontal translation 2 units to the right	
-f(x-2)+5	vertical translation 5 units up	

(b)
$$-3f(x+2)-1$$

f(x)	original	
-f(x)	reflection in <i>x</i> -axis	
-3f(x)	vertical stretch with s.f. 3	
-3f(x+2)	horizontal translation 2 units to the left	
-3f(x+2)-1	vertical translation 1 unit down	

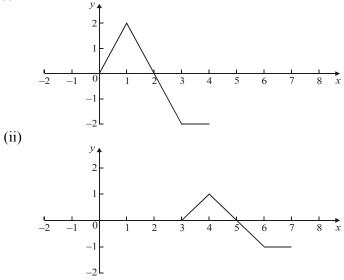
(c)
$$f(2x-10)$$

f(x)	original	
f(x-10)	horizontal translation 10 units to the right	
f(2x-10)	horizontal stretch with s.f. 1/2 (i.e. shrink)	

(d)
$$f(2(x-5))$$

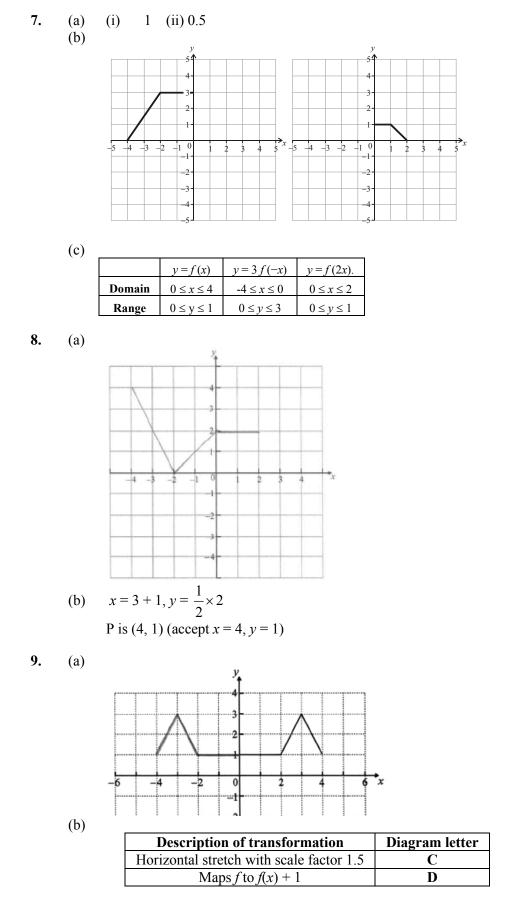
f(x)	original	
f(2x)	horizontal stretch with s.f. 1/2 (i.e. shrink)	
f(2(x-5)) horizontal translation 5 units to the right		

5. (a) (i)



(b) A' (3, 2) (Accept x = 3, y = 2)

6. (a) (I) D (ii) C (iii) A (b) B: f(x)+2 E: f(x-2)

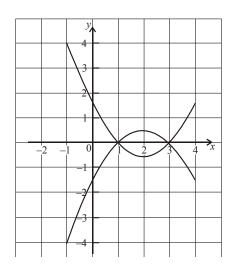


(c) translation (move/shift/slide etc.) 6 units to the left and 2 units down

By GDC the coordinates are (-1,1.66) [or $\left(-1,\frac{5}{3}\right)$] 10. (a)

[Notice: it can also be found by using derivatives later on]

- (i) (-3, -9)(ii) (1, -4)(iii) reflection gives (3, 9)(b) stretch gives $\left(\frac{3}{2},9\right)$
- 11. (a)

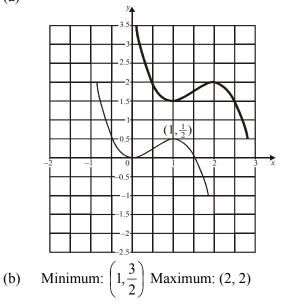


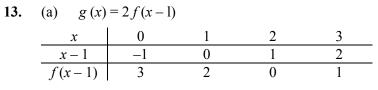
(b) (i)
$$g(-3) = f(0)$$
 $f(0) = -1.5$

translation (accept shift, slide, *etc.*) of $\begin{pmatrix} -3 \\ 0 \end{pmatrix}$ (ii)

(c)

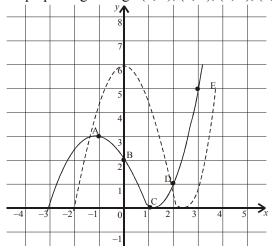
	y = f(x)	y = -f(x)	y = f(x+3).
Domain	$-1 \le x \le 4$	$-1 \le x \le 4$	$-4 \le x \le 1$
Range	$-4 \le y \le 0.5$	$0.5 \le y \le 4$	$-4 \le y \le 0.5$



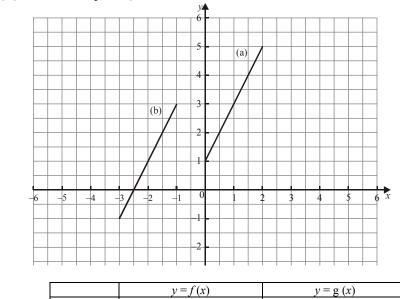


g(0) = 2f(-1) = 6 g(1) = 2f(0) = 4g(2) = 2f(1) = 0 g(3) = 2f(2) = 2

(b) Graph passing through (0, 6), (1, 4), (2, 0), (3, 2)



14. (a) and (b) (Mind the endpoints)



 $0 \le x \le 2$

 $1 \le y \le 5$

15. (a)
$$y = (x - 1)^2$$

 $y = 4(x - 1)^2$
 $y = 4(x - 1)^2 + 3$
(b)

Domain

(c)

$y = x^2$	(0,0)
$y = (x-1)^2$	(1,0)
$y = 4(x-1)^2$	(1,0)
$y = 4(x-1)^2 + 3$	(1,1)

 $-3 \le x \le -1$

 $-1 \le y \le 3$

- **16.** (a) in any order translated 1 unit to the right stretched vertically by factor 2
 - (b) METHOD 1

Finding coordinates of image on g

 $(-1, 1) \rightarrow (-1 + 1, 2 \times 1), (0, 2)$ then P is (3, 0)

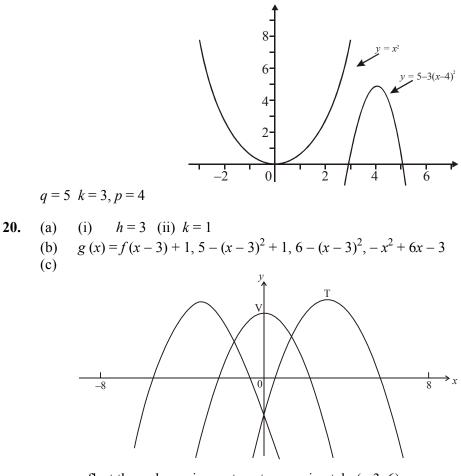
METHOD 2

 $h(x) = 2(x-4)^2 - 2$ P is (3, 0)

17. (a) (1, -2)(b) $g(x) = 3(x-1)^2 - 2$ (accept p = 1, q = -2)

(c)
$$(1, 2)$$

18. (a)
$$y = 2(x-3)^2 + 5$$
 (accept $c = 3, d = 5$)
(b) (i) $k = 2$ (ii) $p = 3$ (iii) $q = 5$



reflect through y-axis, vertex at approximately (-3, 6).

21. (a) $3(x-2)^2 - 1$ (Accept h = 2, k = 1)

(b) METHOD 1

Vertex shifted to (2 + 3, -1 + 5) = (5, 4)so the new function is $3 (x - 5)^2 + 4$ (Accept p = 5, q = 4)

METHOD 2

 $g(x) = 3((x-3) - h)^2 + k + 5 = 3((x-3)-2)^2 - 1 + 5$ = 3(x-5)² + 4 (Accept p = 5, q = 4)

B. Paper 2 questions (LONG)

- 22. (a) attempt to form composition (in any order) $(f \circ g)(x) = (x-1)^2 + 4 (x^2 - 2x + 5)$
 - (b) **METHOD 1** vertex of $f \circ g$ at (1, 4) adding $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ to the coordinates vertex of *h* at (4, 3)

METHOD 2

 $h(x) = (x - 4)^2 + 3$ vertex of *h* at (4, 3)

- (c) $h(x) = x^2 8x + 19$
- (d) equating functions to find intersection point: $x^2 8x + 19 = 2x 6$ $x^2 - 10x + 25 = 0$ x = 5

OR find the point of intersection P(5,4) by using graphs.

(e)
$$x^2 - 8x + 19 = 2x - 5$$

Use graphs to obtain the intersection points (4,3) and (6,7)

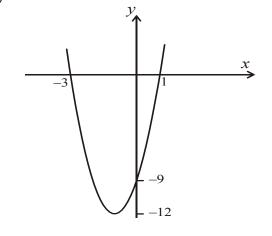
23. (a)
$$f(x) = 3(x^2 + 2x + 1) - 12 = 3x^2 + 6x + 3 - 12 = 3x^2 + 6x - 9$$

(b) (i) vertex is
$$(-1, -12)$$

- (ii) x = -1 (**must** be an equation)
- (iii) (0, 9)

(iv) solving
$$f(x) = 0$$

(-3, 0), (1, 0)



(d) $\binom{p}{q} = \binom{-1}{-12}, t = 3 \text{ (accept } p = -1, q = -12, t = 3)$