EXERCISES [MAI 2.9]
 TRANSFORMATIONS OF FUNCTIONS
 SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1.

$y=f(x)+5$	$(1,5.5)$	$y=f(x+5)$	$(-4,0.5)$
$y=f(x)-5$	$(1,-4.5)$	$y=f(x-5)$	$(6,0.5)$
$y=5 f(x)$	$(1,2.5)$	$y=f(5 x)$	$(0.2,0.5)$
$y=f(x) / 5$	$(1,0.1)$	$y=f(x / 5)$	$(5,0.5)$
$y=-f(x)$	$(1,-0.5)$	$y=f(-x)$	$(-1,0.5)$

2. (a)

$y=f(x)+3$	$(-1,6)$	$y=f(x+3)$	$(-4,3)$
$y=f(x)-3$	$(-1,0)$	$y=f(x-3)$	$(2,3)$
$y=3 f(x)$	$(-1,9)$	$y=f(3 x)$	$(-1 / 3,3)$
$y=f(x) / 3$	$(-1,1)$	$y=f(x / 3)$	$(-3,3)$
$y=-f(x)$	$(-1,-3)$	$y=f(-x)$	$(1,3)$

(b)

$f(x)$	$(-1,3)$
$2 f(x)$	$(-1,6)$
$2 f(x-3)$	$(2,6)$
$2 f(x-3)+4$	$(2,10)$

Hence the corresponding point is $(2,10)$
3. (a)
$y=f(x)+1$

(c) $y=2 f(x)$

(b) $y=f(x)-2$

(d) $y=\frac{1}{2} f(x)$

(e) $y=-f(x)$

(f) $\quad y=f(x+3)$

(g) $y=f(x-3)$

(h) $y=f(3 x)$

(i) $\quad y=f\left(\frac{x}{2}\right)$

(j) $y=f(-x)$

4. (a) $-f(x-2)+5$

$f(x)$	original
$-f(x)$	reflection in x-axis
$-f(x-2)$	horizontal translation 2 units to the right
$-f(x-2)+5$	vertical translation 5 units up

(b) $-3 f(x+2)-1$

$f(x)$	original
$-f(x)$	reflection in x-axis
$-3 f(x)$	vertical stretch with s.f. 3
$-3 f(x+2)$	horizontal translation 2 units to the left
$-3 f(x+2)-1$	vertical translation 1 unit down

(c) $f(2 x-10)$

$f(x)$	original
$f(x-10)$	horizontal translation 10 units to the right
$f(2 x-10)$	horizontal stretch with s.f. $1 / 2$ (i.e. shrink)

(d) $\quad f(2(x-5))$

$f(x)$	original
$f(2 x)$	horizontal stretch with s.f. 1/2 (i.e. shrink)
$f(2(x-5))$	horizontal translation 5 units to the right

5. (a) (i)

(ii)

(b) $\quad \mathrm{A}^{\prime}(3,2)($ Accept $x=3, y=2)$
6.

(a)
(I) D
(ii) C
(iii) A
(b) B: $f(x)+2$ E: $f(x-2)$
7. (a) (i) 1 (ii) 0.5
(b)

(c)

	$y=f(x)$	$y=3 f(-x)$	$y=f(2 x)$.
Domain	$0 \leq x \leq 4$	$-4 \leq x \leq 0$	$0 \leq x \leq 2$
Range	$0 \leq \mathrm{y} \leq 1$	$0 \leq y \leq 3$	$0 \leq y \leq 1$

8. (a)

(b) $x=3+1, y=\frac{1}{2} \times 2$

P is $(4,1)($ accept $x=4, y=1)$
9. (a)

(b)

Description of transformation	Diagram letter
Horizontal stretch with scale factor 1.5	C
Maps f to $f(x)+1$	D

(c) translation (move/shift/slide etc.) 6 units to the left and 2 units down
10. (a) By GDC the coordinates are $(-1,1.66)$ [or $\left.\left(-1, \frac{5}{3}\right)\right]$
[Notice: it can also be found by using derivatives later on]
(b) (i) $(-3,-9)$
(ii) $(1,-4)$
(iii) reflection gives $(3,9)$
stretch gives $\left(\frac{3}{2}, 9\right)$
11. (a)

(b) (i) $\quad g(-3)=f(0) \quad f(0)=-1.5$
(ii) translation (accept shift, slide, etc.) of $\binom{-3}{0}$
(c)

	$y=f(x)$	$y=-f(x)$	$y=f(x+3)$.
Domain	$-1 \leq x \leq 4$	$-1 \leq x \leq 4$	$-4 \leq x \leq 1$
Range	$-4 \leq y \leq 0.5$	$0.5 \leq y \leq 4$	$-4 \leq y \leq 0.5$

12. (a)

(b) Minimum: $\left(1, \frac{3}{2}\right)$ Maximum: $(2,2)$
13. (a) $g(x)=2 f(x-1)$

x	0	1	2	3
$x-1$	-1	0	1	2
$f(x-1)$	3	2	0	1

$g(0)=2 f(-1)=6 \quad g(1)=2 f(0)=4$
$g(2)=2 f(1)=0 \quad g(3)=2 f(2)=2$
(b) Graph passing through $(0,6),(1,4),(2,0),(3,2)$

14. (a) and (b) (Mind the endpoints)

(c)

	$y=f(x)$	$y=\mathrm{g}(x)$
Domain	$0 \leq x \leq 2$	$-3 \leq x \leq-1$
Range	$1 \leq y \leq 5$	$-1 \leq y \leq 3$

15. (a) $y=(x-1)^{2}$
$y=4(x-1)^{2}$

$$
y=4(x-1)^{2}+3
$$

(b)

$y=x^{2}$	$(0,0)$
$y=(x-1)^{2}$	$(1,0)$
$y=4(x-1)^{2}$	$(1,0)$
$y=4(x-1)^{2}+3$	$(1,1)$

16. (a) in any order
translated 1 unit to the right
stretched vertically by factor 2
(b) METHOD 1

Finding coordinates of image on g
$(-1,1) \rightarrow(-1+1,2 \times 1),(0,2)$ then P is $(3,0)$
METHOD 2
$h(x)=2(x-4)^{2}-2 \quad \mathrm{P}$ is $(3,0)$
17. (a) $(1,-2)$
(b) $\quad g(x)=3(x-1)^{2}-2($ accept $p=1, q=-2)$
(c) $(1,2)$
18. (a) $y=2(x-3)^{2}+5 \quad$ (accept $\left.c=3, d=5\right)$
(b)
(i) $\quad k=2$
(ii) $p=3$
(iii) $q=5$
19.

$q=5 k=3, p=4$
20. (a) (i) $h=3$ (ii) $k=1$
(b) $g(x)=f(x-3)+1,5-(x-3)^{2}+1,6-(x-3)^{2},-x^{2}+6 x-3$
(c)

reflect through y-axis, vertex at approximately $(-3,6)$.
21. (a) $3(x-2)^{2}-1$ (Accept $\left.h=2, k=1\right)$
(b) METHOD 1

Vertex shifted to $(2+3,-1+5)=(5,4)$
so the new function is $3(x-5)^{2}+4($ Accept $p=5, q=4)$

METHOD 2

$g(x)=3((x-3)-h)^{2}+k+5=3((x-3)-2)^{2}-1+5$
$=3(x-5)^{2}+4($ Accept $p=5, q=4)$

B. Paper 2 questions (LONG)

22. (a) attempt to form composition (in any order)
$(f \circ g)(x)=(x-1)^{2}+4 \quad\left(x^{2}-2 x+5\right)$
(b) METHOD 1
vertex of $f \circ g$ at $(1,4)$
adding $\binom{3}{-1}$ to the coordinates
vertex of h at $(4,3)$

METHOD 2

$h(x)=(x-4)^{2}+3$
vertex of h at $(4,3)$
(c) $\quad h(x)=x^{2}-8 x+19$
(d) equating functions to find intersection point: $x^{2}-8 x+19=2 x-6$
$x^{2}-10 x+25=0$
$x=5$
OR find the point of intersection $\mathrm{P}(5,4)$ by using graphs.
(e) $x^{2}-8 x+19=2 x-5$

Use graphs to obtain the intersection points $(4,3)$ and $(6,7)$
23. (a) $f(x)=3\left(x^{2}+2 x+1\right)-12=3 x^{2}+6 x+3-12=3 x^{2}+6 x-9$
(b) (i) vertex is $(-1,-12)$
(ii) $\quad x=-1$ (must be an equation)
(iii) $(0,-9)$
(iv) solving $f(x)=0$
$(-3,0),(1,0)$
(c)

(d) $\quad\binom{p}{q}=\binom{-1}{-12}, t=3 \quad($ accept $p=-1, q=-12, t=3)$

